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We study the relation between angular spectral absorptivity and emissivity for any thermal emitter,
which consists of any linear media that can be dispersive, inhomogeneous, bianisotropic, or nonreciprocal.
First, we establish an adjoint Kirchhoff’s law for mutually adjoint emitters. This law is based on generalized
reciprocity and is a natural generalization of conventional Kirchhoff’s law for reciprocal emitters. Using
this law, we derive all the relations between absorptivity and emissivity for an arbitrary thermal emitter
We reveal that such relations are determined by the symmetries of the system, which are characterized by a
Shubnikov point group. We classify all thermal emitters based on their symmetries using the known list of
all three-dimensional Shubnikov point groups. Each class possesses its own set of laws that relates the
absorptivity and emissivity. We numerically verify our theory for all three types of Shubnikov point groups:
Gray groups, colorless groups, and black and white groups. We also verify the theory for both planar and
nonplanar structures with single or multiple diffraction channels. Our theory provides a theoretical
foundation for further exploration of thermal radiation in general media.
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I. INTRODUCTION

Thermal radiation is a fundamental aspect of nature
[1–7]. The control of thermal radiation has important
implications for a wide range of applications such as
energy harvesting [8–13], far-field radiation control
[14–21], near-field thermal management [22–36], radiative
cooling [37–40], imaging [41], and heat-assisted magnetic
recording [42]. Any thermal emitter is fundamentally
characterized by two key quantities: the angular spectral
absorptivity αðω;−n̂; p̂Þ and the angular spectral emissivity
eðω; n̂0; p̂0Þ. αðω;−n̂; p̂Þ represents the absorption coeffi-
cient for incident light at frequency ω and direction −n̂with
a complex polarization vector p̂. eðω; n̂0; p̂0Þ measures the
spectral emission power per unit area at the frequency ω
into the direction n̂0 with a polarization p̂0, normalized
against a blackbody at the same temperature as the emitter.
Most existing studies of thermal radiation are restricted

to reciprocal thermal emitters [4]. Reciprocal thermal
emitters are made of materials that satisfy Lorentz reci-
procity. Reciprocity imposes fundamental constraints on

their properties. In particular, it imposes a direct
relation between the angular spectral absorptivity and
emissivity [1,43]:

αðω;−n̂; p̂Þ ¼ eðω; n̂; p̂�Þ; ð1Þ

where p̂� is the complex conjugation of p̂. Equation (1) is
Kirchhoff’s law [44]. Besides its fundamental significance
[1], Kirchhoff’s law also has great practical importance
[2–5,43,45]. It provides a useful guideline for designing
reciprocal thermal emitters: to attain the desired emissivity,
one only needs to design the absorptivity.
Despite its wide applicability, Kirchhoff’s law does not

hold for all thermal emitters. It is not required by the second
law of thermodynamics, but by Lorentz reciprocity. Not all
thermal emitters are reciprocal. Nonreciprocal thermal
emitters that break Kirchhoff’s law have been constructed
using magneto-optical materials [46–53] and magnetic
Weyl semimetals [54–57].
The capability of breaking Kirchhoff’s law has funda-

mental significance. For example, solar energy harvesting
requires an efficient solar absorber. However, by Kirchhoff’s
law, if the absorber is reciprocal, it must also radiate
efficiently back to the sun. Radiation back to the sun
represents an intrinsic loss mechanism. Consequently, recip-
rocal systems can not reach the ultimate efficiency limit for
solar energy harvesting, known as the Landsberg limit [58].
Instead, to reach the Landsberg limit, one must use nonre-
ciprocal systems [59–61]. It has been shown that the

*guocheng@stanford.edu
†shanhui@stanford.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 12, 021023 (2022)

2160-3308=22=12(2)=021023(14) 021023-1 Published by the American Physical Society

https://orcid.org/0000-0003-4913-8150
https://orcid.org/0000-0002-3648-6183
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.12.021023&domain=pdf&date_stamp=2022-04-28
https://doi.org/10.1103/PhysRevX.12.021023
https://doi.org/10.1103/PhysRevX.12.021023
https://doi.org/10.1103/PhysRevX.12.021023
https://doi.org/10.1103/PhysRevX.12.021023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Landsberg limit can be reached using nonreciprocal thermal
emitters that efficiently absorb the incident sunlight but
emit in a direction different from the incident direction so
that the emitted power can be reharvested [62]. This example
highlights the significant opportunities enabled by nonre-
ciprocal thermal emitters. On the other hand, it also points to
the need for a better understanding of the relation between
angular spectral absorptivity and emissivity, which are no
longer equal.
The development of nonreciprocal thermal emitters, there-

fore, requires a deeper understanding and proper generali-
zation of conventional Kirchhoff’s law. We need a theory
that answers the following fundamental question: What is
the relation, if any, between αðω;−n̂; p̂Þ and eðω; n̂0; p̂0Þ for
any thermal emitter? The desired answer should be a natural
generalization of Kirchhoff’s law, and should reduce to
Kirchhoff’s law when restricted to reciprocal emitters.
Similar to the role of Kirchhoff’s law in reciprocal thermal
radiation, such a theory would play a foundational role in the
theoretical understanding of nonreciprocal thermal radiation.
It would also provide a practical guideline for the design of
nonreciprocal thermal emitters.
Several recent works have obtained results related to this

problem [63,64]. In particular, Ref. [63] showed that for any
thermal emitter, for every input mode with an absorptivity α,
there exists an output mode of which the emissivity is equal
to α. However, Ref. [63] does not in general provide a direct
relation between αðω;−n̂; p̂Þ and eðω; n̂0; p̂0Þ.
In this paper, we provide a generalization of Kirchhoff’s

law to all thermal emitters. The central idea of our work is
this: the relation between αðω;−n̂; p̂Þ and eðω; n̂0; p̂0Þ for
any thermal emitter is determined by its symmetry. This
viewpoint allows us to illustrate the symmetry origin of
conventional Kirchhoff’s law and provide its broadest
generalization based on symmetry. There is a symmetry
that underlies reciprocity: any reciprocal system is invariant
under an adjoint transformation T . (A precise definition
of T is provided in Sec. II C.) Kirchhoff’s law is a direct
consequence of this symmetry T . A nonreciprocal emitter
does not have T as a symmetry, but it may have other
symmetries that can strongly constrain absorptivity and
emissivity. These symmetries include geometric sym-
metries and compound symmetries. Geometric symmetries
include the usual rotations, reflections, and improper
rotations. Compound symmetries are not purely geometric;
instead, they are the combination of geometric symmetries
and T . Both types of symmetries are common in many
practical nonreciprocal thermal emitters. As a simple
example, consider a nonreciprocal thermal emitter as
shown in Fig. 1 as first proposed in Ref. [46], which
consists of an n-InAs grating atop a uniform metal layer
subjected to an external magnetic field B. This structure has
both geometric and compound symmetries. The geometric
symmetry is σvðyzÞ. The compound symmetries are
T σvðxzÞ and T C2ðzÞ. The set of all the geometric and

compound symmetries determines the relations between
absorptivity and emissivity for this structure.
Our main results are twofold. First, we establish an

adjoint Kirchhoff’s law that relates the angular spectral
absorptivity and emissivity, respectively, of a pair of
mutually adjoint emitters. (Mutually adjoint emitters are
related by the adjoint transformation T ; a precise definition
is provided in Sec. II C.) This law directly results from
generalized reciprocity; hence it is a natural extension of
conventional Kirchhoff’s law. Second, based on adjoint
Kirchhoff’s law, we establish the general relations between
angular spectral absorptivity and emissivity for an arbitrary
emitter based on its symmetry. For a finite object, the set of
all the relevant symmetries forms a Shubnikov point group
[65–68]. There is a complete list of all the three-dimen-
sional Shubnikov point groups, which provides a complete
classification of any finite linear thermal emitters. Each
class possesses its own set of laws that constrain absorp-
tivity and emissivity. These Shubnikov point groups can be
further categorized into three types: gray groups, colorless
groups, and black and white groups. Emitters in a gray
group are reciprocal, for which the usual Kirchhoff’s law
holds. Emitters in a colorless group are nonreciprocal, and
there is no relation between any pair of αðω;−n̂; p̂Þ and
eðω0; n̂0; p̂0Þ. Emitters in a black and white group are also
nonreciprocal; however, there is a set of modified
Kirchhoff’s law specific to each group that relates particular
pairs of αðω;−n̂; p̂Þ and eðω0; n̂0; p̂0Þ.
We note that the Shubnikov point group is widely used

in crystallography and commonly associated with three-
dimensionally periodic systems in the solid-state physics
literature. However, as a mathematical concept, such a
group is not restricted to 3D periodic systems. The thermal

FIG. 1. A nonreciprocal thermal emitter as first proposed in
Ref. [46]. It has a geometric symmetry σvðyzÞ and compound
symmetries T σvðxzÞ and T C2ðzÞ. Here σvðyzÞ is the mirror
symmetry with respect to the yz plane, σvðxzÞ is the mirror
operation with respect to the xz plane, C2ðzÞ is the twofold
rotation around the z axis, and T is equivalent to reversing the
magnetic field direction in this particular system.
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emitters considered here are not three-dimensionally peri-
odic systems. But we show that their symmetry properties,
in general, can be described using the mathematical
construction of the Shubnikov point group.
The rest of the paper is organized as follows. Section II

provides the general theory. Section III provides numerical
verification of our theory. We conclude in Sec. IV. Detailed
mathematical proofs are found in the Appendixes A–E.

II. THEORY

A. Geometry and conventions

To start, we define the geometry and provide the
conventions. As shown schematically in Fig. 2, we consider
an object of arbitrary shape made of a linear local
inhomogeneous dispersive bianisotropic medium. It can
be described by a 6 × 6 constitutive matrix Cðω; rÞ:
�
D

B

�
¼Cðω;rÞ

�
E

H

�
¼
�
εðω;rÞ ζðω;rÞ
ηðω;rÞ μðω;rÞ

��
E

H

�
; ð2Þ

where ε, μ, ζ, η are 3 × 3 matrices of electric permittivity,
magnetic permeability, electric-magnetic coupling strength,
and magnetoelectric coupling strength, respectively. ω and
r denote the angular frequencies and the spatial coordi-
nates, respectively. We assume that the object is surrounded
by vacuum as described by ε ¼ ε0; μ ¼ μ0; ζ ¼ 0; η ¼ 0.

Following Ref. [69], we choose the plane wave basis for
both incoming and outgoing waves in free space outside the
emitter. In particular, jω; n̂; p̂i denotes an outgoing plane
wave at a frequency ω propagating along a direction n̂ with
electric field along a complex polarization vector p̂, and
jω;−n̂; p̂i denotes the corresponding incoming plane wave
propagating along the direction −n̂. To fix the phase
convention, we choose a reference surface enclosing the
emitter and specify the phase of each plane wave at the
corresponding intersection point on the reference surface.
We choose the linear polarization basis jσi≡ jêσi, where
σ ¼ p, s denote the p and s polarizations, respectively. By
definition, the complex conjugate of a linear polarization is
itself: jσ�i ¼ jσi. A general polarization state is given by
jp̂i ¼ P

σ cσjσi, where cσ are complex coefficients. The
complex conjugate of jp̂i is defined as jp̂�i ¼ P

σ c
�
σjσi.

For the coordinate system as defined in Fig. 2, we define
the polarization vectors êp ¼ θ̂ and ês ¼ ϕ̂ for both the
outgoing and incoming waves. Note êp and ês depend on n̂.
For an outgoing wave propagating along n̂, ðêp; ês; n̂Þ
forms a right triad. For an incoming wave propagating
along −n̂, ðêp; ês;−n̂Þ forms a left triad. Every basis state is
normalized such that it carries unit intensity.

B. Scattering matrix, angular spectral absorptivity,
and emissivity

The scattering property of a linear object is characterized
by its scattering matrix S, where the matrix element
hω; n̂0; p̂0jSjω;−n̂; p̂i denotes the scattering amplitude
from an incoming plane wave jω;−n̂; p̂i to an outgoing
plane wave jω; n̂0; p̂0i.
The second law of thermodynamics establishes the

following relations between the scattering matrix and
angular spectral absorptivity and emissivity:

αðω;−n̂; p̂Þ ¼ 1 − hω;−n̂; p̂jS†Sjω;−n̂; p̂i; ð3Þ

eðω; n̂; p̂Þ ¼ 1 − hω; n̂; p̂jSS†jω; n̂; p̂i: ð4Þ

A detailed proof of the above relations can be found in
Ref. [63]. But as a simple check, if S is unitary, both
absorptivity and emissivity as calculated in Eqs. (3) and (4)
vanish as expected.
From these relations Eqs. (3) and (4), we can readily

derive the following integrated radiation law: for any linear
object, the sums of the absorptivity and emissivity over all
directions and polarizations are equal:

X
σ

Z
dn̂αðω;−n̂; σÞ ¼

X
σ

Z
dn̂eðω; n̂; σÞ: ð5Þ

The proof of Eq. (5) is provided in Appendix A.

FIG. 2. Scheme. A thermal emitter of arbitrary shape is made of
an inhomogeneous dispersive bianisotropic medium described
by a constitutive matrix Cðω; rÞ. ðx; y; zÞ denote the Cartesian
coordinates. ðθ;ϕÞ denote the polar and azimuthal angle of an
outgoing direction n̂. ês and êp denote the linear polarization
basis. A reference surface enclosing the emitter is chosen to
specify the phase of plane-wave basis.
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C. Generalized reciprocity

At the heart of Kirchhoff’s law is reciprocity [70]. Here
we formulate generalized reciprocity for arbitrary objects.
These relations reduce to ordinary reciprocity as a special
case. The study of generalized reciprocity is important for
the understanding of our theory of adjoint Kirchhoff’s law.
First, we define mutually adjoint systems [69,71–73].

Our choice of the term “adjoint” is in agreement with
Refs. [69,72]. For an “original” system defined by a
constitutive matrix,

Cðω; rÞ ¼
�
εðω; rÞ ζðω; rÞ
ηðω; rÞ μðω; rÞ

�
; ð6Þ

its adjoint system is defined by

C̃ðω; rÞ ¼
�

εTðω; rÞ −ηTðω; rÞ
−ζTðω; rÞ μTðω; rÞ

�
: ð7Þ

We define the transformation Cðω; rÞ → C̃ðω; rÞ as the
adjoint transformation T . T is involutory; i.e., the adjoint
of the adjoint system is the original system. Thus, it defines
a mutual relation. A self-adjoint system, i.e., a system
whose adjoint is itself, is called “reciprocal”; e.g., vacuum
is reciprocal.
We make three further remarks about T . First, T is the

symmetry operation that underlies reciprocity: a system is
reciprocal if and only if it is invariant under T . Second,
compared to geometric transformation, T may seem
unfamiliar to readers, but it is well defined and entirely
conceivable. It may even be physically realizable for some
systems. For example, for magneto-optical materials, T is
equivalent to reversing the magnetic field direction; for
moving media, T is equivalent to reversing the moving
direction [74]. Nonetheless, the physical realizability of T
is irrelevant for our purpose. Third, T is not the time-
reversal transformation. Our entire theory does not involve
any time-reversal transformation.
FromMaxwell’s equations, one can show that the dyadic

Green’s functions of mutually adjoint systems are the
transpose of each other [69,75]. Moreover, for a medium
that is lossy, lossless, or with gain, its adjoint is also lossy,
lossless, or with gain, respectively, due to the relation
between the relevant parts of the constitutive matrices of
mutually adjoint media. (Detailed proof can be found in
Ref. [69], pp. 107–108.)
It is natural to define the scattering matrix S̃ for the

adjoint system with the same basis states and the same
reference surface as S for the original system. Then the
following generalized reciprocity relation holds between S̃
and S:

hω; n̂0; σ0jSjω;−n̂; σi ¼ hω; n̂; σjS̃jω;−n̂0; σ0i; ð8Þ

where σ ¼ p, s and σ0 ¼ p, s label the basis linear
polarizations. Equation (8) holds because the dyadic
Green’s functions of mutually adjoint systems are mutually
transpose. The original proof of Eq. (8) can be found in
Ref. [69]; a shorter proof is provided in Appendix B.
From the above relation for the linear polarization basis,

we can readily derive the following generalized reciprocity
relation for arbitrary polarizations p̂0 and p̂:

hω; n̂0; p̂0jSjω;−n̂; p̂i ¼ hω; n̂; p̂�jS̃jω;−n̂0; p̂0�i: ð9Þ

The proof of Eq. (9) is provided in Appendix C.

D. Adjoint Kirchhoff’s law

Now we are ready to state our first main result.
Adjoint Kirchoff’s law.—For mutually adjoint emitters,

αðω;−n̂; p̂Þ ¼ ẽðω; n̂; p̂�Þ; eðω; n̂; p̂Þ ¼ α̃ðω;−n̂; p̂�Þ;
ð10Þ

where αðα̃Þ; eðẽÞ are the angular spectral absorptivity and
emissivity for the original (adjoint) system, respectively.
The proof of Eq. (10) is provided in Appendix D. For

self-adjoint (reciprocal) systems, the tildes in Eq. (10) can
be dropped; thus adjoint Kirchhoff’s law reduces to
conventional Kirchhoff’s law [Eq. (1)].

E. Relevant transformations, symmetry, and group

Adjoint Kirchhoff’s law relates the angular spectral
absorptivity and emissivity of mutually adjoint emitters.
However, one is usually more interested in the relation
between the angular spectral absorptivity and emissivity for
a single emitter. We answer this question in the remaining
part of this section. We will see that adjoint Kirchhoff’s
law plays a key role in connecting the angular spectral
absorptivity and emissivity for a single emitter.
It is the intrinsic symmetry of an emitter that determines

the relation between its angular spectral absorptivity and
emissivity. In general, symmetry is invariance under trans-
formation and is mathematically described by groups.
Therefore, we must first identify the relevant transforma-
tion, symmetry, and group.
There are two types of relevant transformations. The first

type is the usual geometric transformation including
rotation, reflection, and improper rotation. The second
type, called compound transformations, are geometric
transformations combined with an adjoint transformation
T , where T by definition transforms a system to its adjoint
system. T has two important properties: (1) T commutes
with all geometric transformations and (2) T 2 ¼ E, where
E is the identity transformation.
A symmetry is a transformation that leaves the system

invariant. For any finite system, the set of all the geometric
and compound symmetries forms a group G, which is
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mathematically termed a Shubnikov point group [65,66,68].
We denote G ¼ fA; T Bg, where the two subsets A and T B
contain geometric symmetries and compound symmetries,
respectively. A and B are sets of geometric transformations.
There is a complete classification of all Shubnikov point

groups in three dimensions. Any thermal emitter belongs to
one and only one Shubnikov point group. Thus, we have a
complete classification of all linear thermal emitters based
on their symmetry.
From the general mathematical theory, for any

Shubnikov point groupG ¼ fA; T Bg, A is nonempty since
it contains E, while B can be empty or nonempty.
Moreover, if B is nonempty, it must have the same
cardinality (size) as A. Accordingly, all Shubnikov point
groups can be classified into three types [68]:

(i) gray groups: B ¼ A. In particular, T ¼ T E ∈ G;
(ii) colorless groups: B ¼ ∅;
(iii) black and white groups: B ≠ ∅ and B ∩ A ¼ ∅. In

this case, fA;Bg forms an ordinary point group G0,
and A forms a subgroup of G0 with index 2.

An emitter is reciprocal if it belongs to a gray group. An
emitter is nonreciprocal if it belongs to either a colorless
group or a black and white group.

F. Relation of angular spectral absorptivity
and emissivity for a single emitter

Now we are ready to state our second main result.
Relation of angular spectral absorptivity and emissivity

for a single emitter.—For an arbitrary linear emitter with a
Shubnikov point group G ¼ fA; T Bg,
(1) ∀ a ∈ A,

αðω;−n̂; p̂Þ ¼ αðω;−n̂0; p̂0Þ;
eðω; n̂; p̂Þ ¼ eðω; n̂0; p̂0Þ; ð11Þ

where a transforms n̂; p̂ into n̂0; p̂0.
(2) ∀ b ∈ B,

αðω;−n̂; p̂Þ ¼ eðω; n̂0; p̂0�Þ;
eðω; n̂; p̂Þ ¼ αðω;−n̂0; p̂0�Þ; ð12Þ

where b transforms n̂; p̂ into n̂0; p̂0.
In words, (1) for a pair of directions and polarizations

related by a geometric symmetry, the (angular spectral)
absorptivities are equal, and emissivities are equal, and
(2) for a pair of directions and polarizations related by a
compound symmetry, the (angular spectral) absorptivity of
one equals the emissivity of the other.
The proof of Eqs. (11) and (12) is provided in

Appendix E.
Here we highlight three points. First, sinceG contains all

the geometric and compound symmetries of the system, the
above theorem gives all the relations about its angular
spectral absorptivity and emissivity that can be stated from
geometric symmetry and generalized reciprocity. Second,

to determine all the independent relations, it is unnecessary
to enumerate all the elements in G. Instead, it suffices to
consider a set of generators of G. Last, only a compound
symmetry containing T can relate the absorptivity and
emissivity via adjoint Kirchhoff’s law. This highlights the
essential role of generalized reciprocity in connecting
absorptivity and emissivity, which echoes the essence of
conventional Kirchhoff’s law.
These relations have different consequences for the three

types of Shubnikov point groups.
(i) Gray groups: Since T ∈ G, conventional Kirchh-

off’s law holds. This applies to reciprocal objects.
(ii) Colorless groups: Since G contains no compound

symmetry, no relation exists between any pair of
αðω;−n̂; p̂Þ and eðω; n̂0; p̂0Þ.

(iii) Black and white groups: Since G contains com-
pound symmetries, there is a set of modified Kirchh-
off’s law that relates specific pairs of αðω;−n̂; p̂Þ
and eðω; n̂0; p̂0Þ.

III. NUMERICAL VERIFICATION

Now we verify our theory using two sets of numerical
examples. In the first set of examples, we consider a planar
slab structure made of a general bianisotropic medium. In the
second set of examples, we consider a multilayer grating
structure made of magneto-optical and dielectric materials.
The grating structure is chosen such that there exist multiple
propagating diffraction channels. The planar structures and
gratings possess translational symmetry; hence the integrals
over all modes are reduced to the sum over the relevant
diffraction orders. Using these examples, we verify our
theory for both planar and nonplanar structures with single
or multiple diffraction channels.

A. Bianisotropic planar slab

First, we consider a planar slab made of a general
bianisotropic medium as shown in Fig. 3. We choose the
slab thickness d ¼ 10 μm, and the wavelength λ ¼ 20 μm.

FIG. 3. The geometry for the examples in Figs. 4–6. The
structure is a planar slab made of a general bianisotropic medium
with a constitutive matrix C. Different C’s are chosen in
Figs. 4–6. The slab thickness d ¼ 10 μm. The light wavelength
λ ¼ 20 μm. The coordinate system is the same as shown in Fig. 2.
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We adopt the same coordinate system as shown in Fig. 2.
For an outgoing direction n̂ ¼ ðθ;ϕÞ, there is a correspond-
ing incoming direction −n̂ ¼ ðπ − θ; π þ ϕÞ, where 0 ≤
θ ≤ π and 0 ≤ ϕ < 2π denote the polar and azimuthal
angle of n̂, respectively. We calculate the transmission and
reflection coefficients of the structure using the transfer
matrix method, then deduce the angular spectral absorp-
tivity and emissivity from Eqs. (3) and (4), which results in

αðω;−n̂; σÞ≡ αðω; π − θ; π þ ϕ; σÞ
¼ 1 − Rsσðω; π − θ; π þ ϕÞ
− Rpσðω; π − θ; π þ ϕÞ
− Tsσðω; π − θ; π þ ϕÞ
− Tpσðω; π − θ; π þ ϕÞ; ð13Þ

eðω; n̂; σÞ≡ eðω; θ;ϕ; σÞ
¼ 1 − Rσsðω; π − θ;ϕÞ − Rσpðω; π − θ;ϕÞ
− Tσsðω; θ;ϕÞ − Tσpðω; θ;ϕÞ: ð14Þ

Hereafter, σ ¼ s, p. Here R and T are the power reflectance
and transmittance, respectively. The first and second sub-
scripts of R and T denote the polarization of outgoing and
incoming waves, respectively.
We demonstrate three examples, one for each type of

Shubnikov point groups.

1. Example 1. Gray group

In the first example, we consider a general reciprocal
lossy bianisotropic medium with constitutive tensors

ε¼ ε0

0
B@
0.52þ0.05i 0.91 1.70

0.91 1.59þ0.08i 1.37

1.70 1.37 2.00þ0.04i

1
CA; ð15Þ

μ¼μ0

0
B@
0.09þ0.03i 1.11 1.77

1.11 0.53þ0.05i 1.01

1.77 1.01 0.75þ0.03i

1
CA; ð16Þ

ζ ¼ −ηT ¼ ffiffiffiffiffiffiffiffiffi
ε0μ0

p
0
B@

0.06i 1.38i 1.99i

1.74i 1.09i 1.85i

1.10i 0.97i 0.80i

1
CA: ð17Þ

This medium is self-adjoint, i.e., reciprocal. In addition,
the constitutive tensors above are chosen such that T is the
only symmetry of such a system. The Shubnikov point
group is G1 ¼ fE; T g. From our theory, we expect
αðω;−n̂; σÞ ¼ eðω; n̂; σÞ to be the only constraint.
Figure 4 shows the calculated angular spectral emissivity

and absorptivity eðω; n̂;σÞ¼eðω;θ;ϕ;σÞ and αðω;−n̂;σÞ¼
αðω;π−θ;πþϕ;σÞ. Indeed, we see that αðω;−n̂;σÞ¼
eðω;n̂;σÞ, and there are no other constraints.

FIG. 4. Example 1. Gray group. The constitutive relation is given in Eqs. (15)–(17). (a),(c) Angular spectral absorptivity for s and p
polarizations, respectively, along the incoming direction −n̂ ¼ ðπ − θ; π þ ϕÞ. (b),(d) Angular spectral emissivity for s and p
polarizations, respectively, along the outgoing direction n̂ ¼ ðθ;ϕÞ.
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2. Example 2. Colorless group

In the second example, we consider a general nonrecip-
rocal lossy bianisotropic medium with constitutive tensors:

ε¼ ε0

0
B@
0.06þ0.10i 0.36þ0.43i 1.01−0.48i

0.36−0.43i 1.14þ0.03i 0.65þ0.06i

1.01þ0.48i 0.65−0.06i 1.50þ0.04i

1
CA; ð18Þ

μ¼μ0

0
B@
1.41þ0.01i 0.82þ0.45i 0.70−0.08i

0.82−0.45i 1.73þ0.08i 0.54−0.21i

0.70þ0.08i 0.54þ0.21i 0.59þ0.054i

1
CA; ð19Þ

ζ¼η†¼ ffiffiffiffiffiffiffiffiffi
ε0μ0

p
0
B@
0.50þ0.18i 0.47þ0.32i 0.98þ0.12i

0.79þ0.82i 0.84þ0.91i 0.29þ0.55i

0.41þ0.24i 0.52þ1.00i 0.70þ0.32i

1
CA:

ð20Þ

Here we have assumed that the material loss is non-
gyrotropic, which is reasonable for many gyrotropic media

]54,55 ]. Such a system has neither geometric nor com-
pound symmetry. The Shubnikov point group isG2 ¼ fEg.
Therefore, we expect that no relation exists between
any pair of αðω;−n̂; σÞ and αðω; n̂0; σÞ, eðω;−n̂; σÞ and
eðω; n̂0; σÞ, or αðω;−n̂; σÞ and eðω; n̂0; σÞ.

Figure 5 shows the calculated angular spectral emissivity
and absorptivity eðω; n̂;σÞ¼eðω;θ;ϕ;σÞ and αðω;−n̂;σÞ¼
αðω;π−θ;πþϕ;σÞ. Indeed, we see no relation exists.

3. Example 3. Black and white group

In the third example, we consider a specific nonrecip-
rocal lossy medium with the following constitutive tensors:

ε ¼ ε0

0
B@

4.0þ 0.16i 1.5i 0

−1.5i 4.0þ 0.16i 2.0i

0 −2.0i 4.0þ 0.16i

1
CA;

μ ¼ μ0; ζ ¼ 0; η ¼ 0; ð21Þ
which characterize a uniaxial magneto-optical material
with the magnetization m̂ along the 0.8x̂þ 0.6ẑ direction.
Such a system has both geometric and compound

symmetries. The geometric symmetry is the inversion
symmetry I. (We note that m̂ is a pseudo-vector, and hence
is invariant under inversion.) The compound symmetries
include T σvðxzÞ and T C2ðyÞ, where σvðxzÞ is the mirror
operation with respect to the xz plane and C2ðyÞ is the
twofold rotation around the y axis. (These symmetries are
readily identified because T reverses m̂.) The Shubnikov
point group is G3 ¼ fE; I; T σvðxzÞ; T C2ðyÞg.
From our theory, we determine all the relations from G3.

I requires

αðω; π − θ; π þ ϕ; σÞ ¼ αðω; θ;ϕ; σÞ; ð22Þ

FIG. 5. Example 2. Colorless group. The constitutive relation is given in Eqs. (18)–(20). (a),(c) Angular spectral absorptivity for s and
p polarizations, respectively, along the incoming direction −n̂ ¼ ðπ − θ; π þ ϕÞ. (b),(d) Angular spectral emissivity for s and p
polarizations, respectively, along the outgoing direction n̂ ¼ ðθ;ϕÞ.
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eðω; θ;ϕ; σÞ ¼ eðω; π − θ; π þ ϕ; σÞ: ð23Þ

T σvðxzÞ requires

αðω; π − θ; π þ ϕ; σÞ ¼ eðω; θ;−ϕ; σÞ: ð24Þ

T C2ðyÞ requires

αðω; π − θ; π þ ϕ; σÞ ¼ eðω; π − θ; π − ϕ; σÞ: ð25Þ

We note that these relations Eqs. (22)–(25) are not
independent. For example, Eq. (25) can be derived from
Eqs. (22)–(24), because T C2ðyÞ ¼ IT σvðxzÞ.

Figure 6 shows the calculated angular spectral emissivity
and absorptivity eðω; n̂;σÞ¼eðω;θ;ϕ;σÞ and αðω;−n̂;σÞ¼
αðω;π−θ;πþϕ;σÞ. Indeed, we verify all the relations
Eqs. (22)–(25) hold.

B. Nonreciprocal diffraction grating

Next, we consider a class of more complicated nonplanar
structures: multilayer diffraction gratings. As shown in
Fig. 7, the structures consist of a top grating, a middle
dielectric layer, and a bottom substrate. We choose the
operation wavelength λ ¼ 15 μm. The grating and the
substrate have a permittivity tensor,

εmo ¼

0
B@

−76.507þ 0.014i 0 0

0 −76.507þ 0.014i −26.618i
0 26.618i −76.507þ 0.014i

1
CA; ð26Þ

describing a magnetic Weyl semimetal with the Weyl
node separation 2b ¼ 4.8 nm−1 along the x direction.
(See Ref. [55] for more details.) The dielectric material
has a permittivity ε ¼ 10.254þ 0.052i, close to that of SiC
or Si at λ ¼ 15 μm. For comparison, we consider two
structures, as shown in Figs. 7(a) and 7(d). Both the
gratings have a period Λ ¼ 20 μm, and have two parallel

ridges of different widths in a unit cell. The centers of
neighboring ridges are separated by Λ1 and Λ2, respectively.
The former grating has Λ1 ¼ Λ2 ¼ Λ=2 ¼ 10 μm, whereas
the latter grating has Λ1 ¼ 12 μm, Λ2 ¼ 8 μm. The other
structure parameters are identical and provided in the caption
of Fig. 7. These two structures have different symmetries.
The former has both the geometric symmetry σvðyzÞ and the

FIG. 6. Example 3. Black and white group. The constitutive relation is given in Eq. (21). (a),(c) Angular spectral absorptivity for s and
p polarizations, respectively, along the incoming direction −n̂ ¼ ðπ − θ; π þ ϕÞ. (b),(d) Angular spectral emissivity for s and p
polarizations, respectively, along the outgoing direction n̂ ¼ ðθ;ϕÞ.

CHENG GUO, BO ZHAO, and SHANHUI FAN PHYS. REV. X 12, 021023 (2022)

021023-8



compound symmetries T σvðxzÞ and T C2ðzÞ; the Shubni-
kov point group is G4 ¼ fE; σvðyzÞ; T σvðxzÞ; T C2ðzÞg.
The latter has only the mirror symmetry σvðyzÞ; the
Shubnikov point group is G5 ¼ fE; σvðyzÞg.
We consider p-polarized light incident in the yz plane

with an incident angle θ. Since λ < Λ, there exist multiple
propagating diffraction orders. When θ varies, the propa-
gating diffraction orders fmg vary accordingly (see
Table I). Despite such a complicated diffraction scenario,
our theory provides a simple prediction: αðω; θ; pÞ ¼
eðω;−θ; pÞ for all θ for the former structure, while no
relation exists for the latter structure. Here ω ¼ 2πc=λ. Our
examples are inspired by the structure in Fig. 1 first
proposed in Ref. [46]. For readers’ convenience of

comparison, we follow Ref. [46] and use θ to denote the
incoming −n̂ and outgoing n̂ direction. Such a notation
differs from that in the previous examples where ðθ;ϕÞ
denotes n̂ and ðπ − θ; π þ ϕÞ denotes −n̂.
We use the COMSOL Multiphysics® software [76] to

calculate the scattering matrix S of the structure as a
function of θ, then determine αðω; θ; pÞ and eðω; θ; pÞ
using Eqs. (3) and (4). Figures 7(b) and 7(c) and Figs. 7(e)
and 7(f) plot the results for the two structures, respectively.
Indeed, we verify all the theoretical predictions hold. In
particular, we see a clear relation between the absorptivity
and emissivity in the example of Fig. 7(a), since the two
processes can be related by the compound symmetry
T σvðxzÞ or T C2ðzÞ. In contrast, no such relation exists

FIG. 7. (a)–(c) A nonreciprocal diffraction grating with a higher symmetry. (a) The structure consists of a top grating of thickness
t1 ¼ 0.68 μm, a middle dielectric of thickness t2 ¼ 1.10 μm, and a bottom substrate of thickness t3 ¼ 50 μm. The grating and the
substrate are made of a magneto-optical material subjected to a magnetic field B along the x direction. Its permittivity tensor is given in
Eq. (26). The dielectric has a permittivity ε ¼ 10.254þ 0.052i. The grating has a periodicity Λ ¼ 20 μm along the y direction, and has
two parallel ridges in a unit cell with widths w1 ¼ 3.085 μm and w2 ¼ 4.928 μm, respectively. The centers of two neighboring ridges
are separated by Λ1 ¼ 10 μm and Λ2 ¼ 10 μm. The incident light is p polarized with a wavelength λ ¼ 15 μm and incident angle θ.
There exist multiple propagating diffraction orders fmg that depend on θ. (See Table I.) (b) Angular spectral absorptivity along the
incoming direction −n̂ denoted by θ. (c) Angular spectral emissivity along the outgoing direction n̂ also denoted by θ. (d)–(f) A
nonreciprocal diffraction grating with a lower symmetry. (d) The structure is identical to that in (a), except Λ1 ¼ 12 μm and Λ2 ¼ 8 μm.
(e),(f) Angular spectral absorptivity and emissivity as functions of θ.
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for the example in Fig. 7(d), since the structure no longer
supports such compound symmetries.

IV. FINAL REMARK AND CONCLUSION

Before concluding, we make several final remarks.
First, we have focused on the relations between angular

spectral absorptivity and angular spectral emissivity, two of
the key surface radiative properties of thermal emitters [4].
Similar relations can be established for other surface
radiative properties such as bidirectional spectral reflectivity
and bidirectional spectral transmissivity [4], and for absorp-
tion and emission cross sections of antennas [69]. For all
these extensions, the concepts of adjoint transformation and
compound symmetry will again play an essential role.
Second, we have focused on the adjoint transformation

associated with reciprocity. Such a transformation is
appropriate for typical thermal emitters since it preserves
the dissipative characteristics pointwise [69]. In addition to
this adjoint transformation, there are other internal trans-
formations and internal symmetries, such as those asso-
ciated with time reversal or energy conservation [77].
However, the transformations associated with time reversal
or energy conservation transform a lossy medium into a
medium with gain, and therefore are less relevant for the
discussions of typical thermal emitters that are lossy.
Third, our theory provides a useful guideline for the

practical design of nonreciprocal thermal emitters. As we
pointed out, there exist two types of nonreciprocal thermal
emitters, black and white and colorless. An emitter of black
and white type violates the conventional Kirchhoff’s law,
but there is a specific correlation between its emissivity and
absorptivity. An emitter of colorless type has no direct
relation between its emissivity and absorptivity. Either type
may be preferable depending on application scenarios. In
the design of nonreciprocal thermal emitters for a specific
application, one should first decide a preferable type, then
choose the corresponding symmetry group, and finally
carry out a detailed design while respecting the symmetry.
Thus, the symmetry principle can be used to regulate the
design process and ensures the desired relation between
absorptivity and emissivity. As an example, we have
applied the symmetry analysis in the design of a semi-
transparent nonreciprocal thermal emitter [13].
In conclusion, we study the general relations between

angular spectral absorptivity and emissivity for an arbitrary

thermal emitter that can be dispersive, inhomogeneous,
bianisotropic, and nonreciprocal. We establish an adjoint
Kirchhoff’s law for mutually adjoint emitters based on
generalized reciprocity. From this law, we reveal the
intrinsic Shubnikov point group symmetries of any single
object that determine the relations between its angular
spectral absorptivity and emissivity. We provide a classi-
fication of thermal emitters based on their symmetry using
the complete list of three-dimensional Shubnikov point
groups. We numerically verify the theory for all three types
of Shubnikov point groups: gray groups, colorless groups,
and black and white groups. We also verify the theory for
both planar and nonplanar structures with single or multiple
diffraction channels. Our general theory provides a theo-
retical foundation for further exploration of thermal radi-
ation in general media.
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APPENDIX A: PROOF OF THE INTEGRATED
RADIATION LAW [EQ. (5)]

Here we prove Eq. (5). Note

X
σ

Z
dn̂αðω;−n̂; σÞ

¼
X
σ

Z
dn̂ð1 − hω;−n̂; σjS†Sjω;−n̂; σiÞ

¼ TrðI − S†SÞ; ðA1Þ
X
σ

Z
dn̂eðω; n̂; σÞ

¼
X
σ

Z
dn̂ð1 − hω; n̂; σjSS†jω; n̂; σiÞ

¼ TrðI − SS†Þ; ðA2Þ

where Trð·Þ is the trace of a linear operator, which is
independent of the choice of basis. Since TrðS†SÞ ¼
TrðSS†Þ, Eqs. (A1) and Eq. (A2) are equal, thus Eq. (5)
holds. This completes the proof.

APPENDIX B: PROOF OF GENERALIZED
RECIPROCITY FOR LINEAR
POLARIZATION [EQ. (8)]

Here we prove Eq. (8). See Ref. [69], pp. 102–106, for
the original proof, and Ref. [77] for additional details.

TABLE I. Incident angle dependence of diffraction orders for
the structure in Fig. 7.

Incident angle θ Diffraction orders fmg
ð−90°;−30°� f0; 1; 2g
ð−30°;−14.5°� f0; 1g
ð−14.5°; 14.5°� f−1; 0; 1g
ð14.5°; 30°� f−1; 0g
ð30°; 90°Þ f−2;−1; 0g
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First, we recall the definition of scattering matrices
[78,79]. As shown in Fig. 2, we consider a general
sourceless linear time-invariant system characterized by
Cðω; rÞ within a volume V enclosed by a surface ∂V. The
system is connected to its exterior by P incoming and P
outgoing modes. For simplicity, we consider the case where
P is finite. (One can take the continuum limit to extend the
results to incorporate plane waves in all directions. See
Ref. [69] for more details.) The modes are chosen to have
real transverse fields feiðrtÞ; hiðrtÞg, 1 ≤ i ≤ P, which
satisfy the orthonormal conditions [79]:

I
∂V

dS · eiðrtÞ × hjðrtÞ ¼
I
∂V

dS · ejðrtÞ × hiðrtÞ

¼ −2δij; 1 ≤ i; j ≤ P: ðB1Þ

Then the transverse fields of light outside ∂V can be
expressed as

Etðrt; zÞ ¼
XP
i¼1

ðaie−iβiz þ bieiβizÞeiðrtÞ;

Htðrt; zÞ ¼
XP
i¼1

ðaie−iβiz − bieiβizÞhiðrtÞ: ðB2Þ

Here the local coordinates rt ¼ ðx; yÞ are tangential to ∂V
and z is along the outgoing direction. We set z ¼ 0 at ∂V.
Thus the incoming and outgoing waves can be represented
by complex vectors:

a ¼ ½a1;…; aP�T; b ¼ ½b1;…; bP�T; ðB3Þ

where ai and bi are the complex coefficients of the ith
incoming and outgoing modes, respectively. There is a
linear relation between a and b:

b ¼ Sa; ðB4Þ

S is a matrix of size P × P, called the scattering matrix.
Its element Sij gives the scattering amplitude from the
jth basis mode into the ith basis mode.
From the original system as described by Cðω; rÞ, we can

define its adjoint system characterized by C̃ðω; rÞ, as
defined by Eq. (7), within the same volume V enclosed
by the same surface ∂V. The ports are identical to those of
the original system. Thus, we can choose the same
orthonormal basis and define the scattering matrix for
the adjoint system:

b̃ ¼ S̃ ã; ðB5Þ

where ã; b̃; S̃ are the incoming amplitudes, outgoing
amplitudes, and scattering matrices of the adjoint system,
respectively.

Our objective is to establish the relation between S and S̃.
This is achieved by using the generalized reciprocity
theorem [71]: if a current density JðrÞ at frequency ω
produces fields EðrÞ and HðrÞ in the original system, and
another J̃ðrÞ at ω produces ẼðrÞ and H̃ðrÞ in its adjoint
system, then

I
∂V
ðE × H̃ − Ẽ ×HÞ · dS ¼

Z
V
ðẼ · J − E · J̃ÞdV: ðB6Þ

If we assume that there are no sources within V, Eq. (B6)
becomes

I
∂V
ðE × H̃ − Ẽ ×HÞ · dS ¼ 0: ðB7Þ

We express the fields at the surface ∂V in terms of the
incoming and outgoing amplitudes using the orthonormal
basis, then perform the integration over the cross sections.
Using mode orthonormality [Eq. (B1)], Eq. (B7) becomes

XP
i¼1

½ðai þ biÞðãi − b̃iÞ − ðãi þ b̃iÞðai − biÞ� ¼ 0; ðB8Þ

which can be simplified as

XP
i¼1

ðbiãi − aib̃iÞ ¼ bT ã − aT b̃ ¼ 0: ðB9Þ

Substituting Eqs. (B4) and (B5) into Eq. (B9), we obtain

aTðST − S̃Þã ¼ 0: ðB10Þ

Since Eq. (B10) holds for any a and ã, it requires

S̃ ¼ ST: ðB11Þ

This is the relation between S̃ and S.
In the case of linear polarized plane-wave basis,

Eq. (B11) becomes

hω; n̂0; σ0jSjω;−n̂; σi ¼ hω; n̂; σjS̃jω;−n̂0; σ0i; ðB12Þ

where σ ¼ p, s and σ0 ¼ p, s are the polarization labels.
This completes the proof.

APPENDIX C: PROOF OF GENERALIZED
RECIPROCITY FOR ARBITRARY

POLARIZATION [EQ. (9)]

Here we prove Eq. (9). Let

jp̂i ¼
X
σ

cσjσi; jp̂0i ¼
X
σ0
dσ0 jσ0i; ðC1Þ
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where cσ and dσ0 are complex coefficients. By definition,

jp̂�i ¼
X
σ

c�σjσi; jp̂0�i ¼
X
σ0
d�σ0 jσ0i; ðC2Þ

then

hω; n̂0; p̂0jSjω;−n̂; p̂i ¼
X
σ

X
σ0

d�σ0cσhω; n̂0; σ0jSjω;−n̂; σi

¼
X
σ

X
σ0

cσd�σ0 hω; n̂; σjS̃jω;−n̂0; σ0i

¼ hω; n̂; p̂�jS̃jω;−n̂0; p̂0�i: ðC3Þ

This completes the proof.

APPENDIX D: PROOF OF ADJOINT
KIRCHOFF’S LAW [EQ. (10)]

Here we prove Eq. (10). We note

αðω;−n̂;p̂Þ
¼1−hω;−n̂;p̂jS†Sjω;−n̂;p̂i

¼1−
X
σ0

Z
dn̂0hω;−n̂;p̂jS†jω; n̂0;σ0ihω;n̂0;σ0jSjω;−n̂;p̂i

¼1−
X
σ0

Z
dn̂0hω;−n̂0;σ0jS̃†jω;n̂;p̂�ihω; n̂;p̂�jS̃jω;−n̂0;σ0i

¼1−
X
σ0

Z
dn̂0hω;n̂;p̂�jS̃jω;−n̂0;σ0ihω;−n̂0;σ0jS̃†jω;n̂;p̂�i

¼1−hω;n̂;p̂�jS̃S̃†jω;n̂;p̂�i
¼ ẽðω;n̂;p̂�Þ: ðD1Þ

Following a similar procedure,

eðω; n̂; p̂Þ ¼ 1 − hω; n̂; p̂jSS†jω; n̂; p̂i
¼ 1 − hω;−n̂; p̂�jS̃†S̃jω;−n̂; p̂�i
¼ α̃ðω;−n̂; p̂�Þ: ðD2Þ

In Eq. (D1), the first and sixth equalities use Eqs. (3) and
(4), the second and fifth equalities use the completeness of
the plane-wave basis, and the third equality uses Eq. (9).
This completes the proof.

APPENDIX E: PROOF OF RELATIONS
EQS. (11) AND (12)

Here we prove Eqs. (11) and (12). Equation (11) is
obvious by the definition of geometric symmetry. We only
need to prove Eq. (12). Suppose T b is a symmetry. Since T
commutes with any geometric transformation, T b ¼ bT .
We first apply T to convert the system into its adjoint
system. From adjoint Kirchhoff’s law,

αðω;−n̂; p̂Þ ¼ ẽðω; n̂; p̂�Þ; eðω; n̂; p̂Þ ¼ α̃ðω;−n̂; p̂�Þ:
ðE1Þ

We then apply b to convert the adjoint system back into the
original system, since bT is a symmetry. Therefore,

ẽðω;n̂;p̂�Þ¼eðω;n̂0;p̂0�Þ; α̃ðω;−n̂;p̂�Þ¼αðω;−n̂0;p̂0�Þ;
ðE2Þ

where b transforms n̂; p̂ into n̂0; p̂0. Combining Eqs. (E1)
and (E2), we get Eq. (12). This completes the proof.
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