Violating Kirchhoff’s Law of Thermal Radiation in Semitransparent Structures

Yubin Park,* Viktar S. Asadchy, Bo Zhao, Cheng Guo, Jiahui Wang, and Shanhui Fan*

ABSTRACT: Kirchhoff’s law of thermal radiation imposes a constraint on photon-based energy harvesting processes since part of the incident energy flux is inevitably emitted back to the source. By breaking the reciprocity of the system, it is possible to overcome this restriction and improve the efficiency of energy harvesting. Here, we design and analyze a semitransparent emitter that fully absorbs normally incident energy from a given direction with zero backward and unity forward emissivity. The nearly ideal harvesting functionality, having the total thickness of the order of the wavelength-scale thickness is achieved due to the magneto-optical effect and the guided-mode resonance engineered in the emitter structure. We derive the general requirements for the nonreciprocal emitter using the temporal coupled mode theory and the symmetry considerations. Finally, we provide a realistic emitter design based on a photonic crystal slab consisting of a magnetic Weyl semimetal and silicon.

KEYWORDS: Kirchhoff’s law, nonreciprocity, energy harvesting, magneto-optical, photonic crystal, coupled mode theory

Kirchhoff’s law of thermal radiation states that emissivity of a body has to be equal to its absorptivity for a given angle-polarization and frequency of thermal electromagnetic radiation.1−4 Due to this balance between emission and absorption, whenever an object absorbs light, it must emit energy back to the original source, as illustrated in Figure 1a. Processes of energy harvesting from thermal radiation inevitably suffer from this loss. Thus, overcoming this restriction by violating the Kirchhoff’s law is of fundamental importance in order to provide opportunities for higher energy harvesting efficiency.5

The Kirchhoff’s law is generally obeyed by any system that satisfies the Lorentz reciprocity.6−7 Once the reciprocity of a system is broken, this law does not hold anymore, and it is possible to achieve a nonreciprocal thermal emitter that exhibits a contrast between the emissivity and the absorptivity.8−11 Employing the magneto-optical effect is a widely used method to design a nonreciprocal system, and there have been several preceding works exploiting this effect to construct nonreciprocal thermal emitters.12−18 Zhu and Fan proposed a specific design for a thermal emitter using magneto-optical photonic crystals in ref 12, and Zhao et al. developed this work further by greatly reducing the required magnetic field in the structure in ref 13. In addition, various materials have been studied for the purpose of achieving nonreciprocal thermal emitters.14−16 All these emitters are opaque and suitable only for reflection-based nonreciprocal systems (see Figure 1b). However, for certain applications it is preferable to have nonreciprocal emission in a transmission-based configuration, as depicted in Figure 1c. For example, in multijunction solar cells, the p−n junctions with higher bandgaps are arranged toward the top of the solar cell. In this case, the emission from the junctions toward the sun represents an intrinsic photon loss mechanism. This loss channel can be avoided if the junctions are made nonreciprocal such that the emitted photons from the upper junctions can be absorbed by the lower-bandgap junctions below to contribute to electrical energy generation (see Figure 1d).

In this paper, we analyze and propose a semitransparent photonic crystal slab that can achieve the above-mentioned functionality, having the total thickness of the order of the operational wavelength. The emitter operates for normal illumination and provides a near-unity difference between the absorptivity and emissivity in the direction of the source as illustrated in Figure 1c.

The paper is organized as follows. First, using the temporal coupled mode theory (CMT), we derive general theoretical conditions required for the violation of Kirchhoff’s law in a semitransparent slab for normal incidence. Next, we determine the symmetry of the photonic crystal slab which allows us to...
A nonreciprocal emitter (shown as a white box) is located between blackbodies 1 and 2. Under the thermal equilibrium, there are several constraints imposed on the energy flows (shown with arrows in the figure) in the system which we discuss below. Once the constraints are derived, one can apply them to the nonequilibrium situations. In the figure, \(\alpha_{12} \) represents the absorptivity of the emitter, which accounts for the ratio of energy absorbed by the emitter to the incoming energy for a given illumination direction. Emissivity of the emitter \(\epsilon_{1} (\epsilon_{2}) \) accounts for the ratio of energy emitted by the emitter toward blackbody 1 (blackbody 2) to the energy emitted by a blackbody emitter in the same situation. Quantities \(r_{12} \) and \(t_{12} \) represent the reflectivity and transmissivity, respectively.

Considering first the energy emitted from the blackbody 1 toward the emitter, this energy can take three different routes, as shown in Figure 2a: it can be absorbed by the emitter \((\alpha_{1}) \), it can be reflected back to the blackbody 1 \((r_{1}) \), or it can transmit through the emitter \((t_{1}) \). Thus, the following energy-balance equation has to hold:

\[
\alpha_{1} + t_{1} + r_{1} = 1 \tag{1}
\]

Similarly, considering the energy absorbed by the blackbody 1, this energy consists of three different components: energy emitted from the emitter \((\epsilon_{1}) \), energy that was reflected at the top \((r_{1}) \), and energy that transmitted through the emitter upward \((t_{2}) \). Therefore, another energy-balance equation holds:

\[
\epsilon_{1} + t_{2} + r_{2} = 1 \tag{2}
\]

Similar equations can be derived from the blackbody 2 side as well:

\[
\alpha_{2} + t_{2} + r_{2} = 1 \tag{3}
\]

\[
\epsilon_{2} + t_{1} + r_{1} = 1 \tag{4}
\]

The goal of this work is to design such an emitter which provides full energy absorption from the top half-space (emitted by blackbody 1) with energy emission exclusively toward the bottom half-space (toward blackbody 2). This can be translated into the conditions of \(\alpha_{1} = 1 \) and \(\epsilon_{1} = 0 \), which together with eqs 1–4 provide us with the requirements:

\[
\epsilon_{1} = \alpha_{2} = t_{1} = r_{1} = r_{2} = 0 \tag{5}
\]

\[
\alpha_{1} = \epsilon_{2} = t_{2} = 1 \tag{6}
\]

In other words, under the ideal operation, the emitter will fully absorb energy incident from the top, emit it completely to the bottom, while passing all the energy coming from the bottom without reflection or absorption. We can see from eqs 1 and 2 that, in this design, the absorptivity–emissivity contrast \(\Delta \alpha = \alpha_{1} - \epsilon_{1} \) is equal to the contrast of transmissivities \(\Delta t = t_{1} - t_{2} \). This is in sharp contrast with previous designs in refs 5, 12–16, where the absorptivity–emissivity contrast arises from the contrast of reflectivities.

Temporal Coupled Mode Theory Analysis. To achieve the absorptivity–emissivity contrast as discussed above, we consider a resonator system, as shown in Figure 2b. The resonator system couples to two ports on either side of the resonator (one port on each side). We apply CMT here, which is valid when the Q-factor of the resonance is sufficiently high, and we assume a single mode resonance. According to the CMT formalism, our two-port system can be described by the following equations:17,18
\[
\frac{du}{dt} = \left(j\omega_0 - \gamma - \frac{1}{\tau}\right)u + \left(\kappa_1 \kappa_2\right)\begin{pmatrix} s_{1+} \\ s_{2+} \end{pmatrix}
\]

(7a)

\[
\begin{pmatrix} s_{1-} \\ s_{2-} \end{pmatrix} = C \begin{pmatrix} s_{1+} \\ s_{2+} \end{pmatrix} + \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} t
\]

(7b)

where \(u\) is the amplitude of the resonant mode normalized so that \(|u|\) corresponds to the energy, \(\omega_0\) is the resonant angular frequency, and \(\gamma\) and \(1/\tau\) are the decay rates due to radiation and the material loss, respectively. \(s_{1\pm}\) and \(s_{2\pm}\) are incoming and outgoing wave amplitudes (\(i = 1\) for the top port and \(i = 2\) for the bottom port), respectively. \(\kappa_i\) and \(d_i\) are coupling coefficients to each port, \(\kappa_i\) for absorption and \(d_i\) for emission.

\[
C = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix}
\]

is the matrix describing the background scattering process.\(^{19}\) If we neglect the material loss for now, that is, \(1/\tau = 0\), the system is energy-conserving and the parameters satisfy the following equations:\(^{20,21}\)

\[
C^* C = I
\]

(8a)

\[
\begin{pmatrix} \kappa_1^2 & \kappa_2^2 \\ \kappa_1^2 & \kappa_2^2 \end{pmatrix} + \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = 0
\]

(8b)

\[
|\kappa_1|^2 + |\kappa_2|^2 = |d_1|^2 + |d_2|^2 = 2\gamma
\]

(8c)

Note that eq 8 only assumes energy conservation, and no constraint regarding reciprocity is imposed here. Therefore, this holds for our nonreciprocal structure as well.

Then, by adding \(1/\tau\) back into eq 7, we can introduce the scattering matrix \(S\) as \(s_{\gamma} = Ss_{s\gamma}\), which is given by

\[
S = C + i(\omega - \omega_0) + \gamma + 1/\tau
\]

(9)

where \(\kappa = \begin{pmatrix} s_{1\pm} \\ s_{2\pm} \end{pmatrix}\), \(d = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}\), and \(\kappa = \begin{pmatrix} \kappa_1 \\ \kappa_2 \end{pmatrix}\). We note that, in order to take account of material loss by simply adding \(1/\tau\) back, we have to assume that the influence on other parameters due to this addition is negligible. This is a common approximation when applying CMT to describe lossy resonator structures.\(^22\) As will be shown below, this approximation works well for the present case.

By comparing the scattering matrix \(S\) and the energy flow diagram of Figure 2a, we can deduce the following relations: \(|s_{11}|^2 = r_1\), \(|s_{21}|^2 = t_1\), \(|s_{12}|^2 = r_2\), and \(|s_{22}|^2 = t_2\). Therefore, expressions for absorptivities and emissivities can be derived using eq 8:

\[
\alpha_i(\omega) = 1 - |s_{1i}|^2 - |s_{2i}|^2 = \frac{2}{\tau} \frac{|\kappa_i|^2}{(\omega - \omega_0)^2 + (\gamma + 1/\tau)^2}
\]

(10a)

\[
\epsilon_i(\omega) = 1 - |s_{1i}|^2 - |s_{2i}|^2 = \frac{2}{\tau} \frac{|d_i|^2}{(\omega - \omega_0)^2 + (\gamma + 1/\tau)^2}
\]

(10b)

\[
\alpha_i(\omega) = 1 - |s_{1i}|^2 - |s_{2i}|^2 = \frac{2}{\tau} \frac{|\kappa_i|^2}{(\omega - \omega_0)^2 + (\gamma + 1/\tau)^2}
\]

(10c)

\[
\epsilon_i(\omega) = 1 - |s_{1i}|^2 - |s_{2i}|^2 = \frac{2}{\tau} \frac{|d_i|^2}{(\omega - \omega_0)^2 + (\gamma + 1/\tau)^2}
\]

(10d)

Note that these are Lorentzian functions and, as will be shown below, they accurately describe the actual spectra near the resonance frequency for the photonic crystal slab. Note also that \(\alpha_i\) is proportional to \(|\kappa_i|^2\) and \(\epsilon_i\) is proportional to \(|d_i|^2\) (for \(i = 1\) and 2). This accords with our initial setup of CMT, where \(\kappa_i\) is the in-coupling coefficient and \(d_i\) is the out-coupling coefficient between the port and the resonator.

Since our goal is to maximize the contrast between absorptivity and emissivity, we now look at the expression for \(\alpha_1(\omega_0) - \epsilon_i(\omega_0)\) at resonance frequency \(\omega = \omega_0\):

\[
\alpha_1(\omega_0) - \epsilon_i(\omega_0) = \frac{|\kappa_1|^2}{2\gamma} - \frac{|d_i|^2}{2\gamma} \frac{4\gamma}{(\gamma + 1/\tau)^2}
\]

(11)

It is clear from eq 11 that maximization of \(|\alpha_1(\omega_0) - \epsilon_i(\omega_0)|\) can be achieved by satisfying two separate conditions. The first condition is maximizing the difference between the normalized coupling rates \(|\kappa_1|^2\) and \(|d_i|^2\). The second condition is the critical coupling condition of \(\gamma = 1/\tau\), which was also pointed out in ref 12. Thus, a proper design requires simultaneous maximization of the magnitude difference between the input and the output coupling coefficients and matching of the radiation and absorption losses.

DESIGN

Based on the CMT formalism presented in the previous section, we consider an emitter consisting of a photonic crystal structure shown in Figure 3. We place two bars, made of dielectric and magneto-optical materials, on top of a dielectric slab as shown at the top of Figure 3. In addition, we place another parallel dielectric slab at a distance \(l\) away in the \(x\) direction.
direction, as shown at the bottom of the figure. The entire structure is surrounded by air. In this work, we choose the dielectric material to be silicon in order to exploit the strong index contrast between silicon and air. The magnetization direction in the magneto-optical regions is parallel to the z axis, and we express the permittivity of the magneto-optical material by a tensor

\[
\varepsilon = \begin{bmatrix}
\varepsilon_d & -j\varepsilon_a & 0 \\
\varepsilon_a & \varepsilon_d & 0 \\
0 & 0 & \varepsilon_\parallel
\end{bmatrix}
\]

(12)

Let us decompose the diagonal component into real and imaginary parts so that \(\varepsilon_d = \varepsilon_{dR} - j\varepsilon_{dI}\). The imaginary part accounts for the material loss. The off-diagonal component \(\varepsilon_a\) characterizes the strength of the nonreciprocal effect and arises from the magnetization of the material. In most situations, the imaginary part of \(\varepsilon_a\) is very small and can be neglected. For incident light, we consider a TM-polarized wave propagating in the \(\pm x\) direction with a magnetic field in the \(z\) direction and an electric field in the \(xy\) plane. The setup, therefore, is in the Voigt configuration, with the wave propagating perpendicular to the direction of magnetization.

As shown above based on eqs 1 and 2, maximization of the contrast between \(\alpha_t\) and \(\varepsilon_1\) has the same conditions as maximization of the contrast between the transmission along the two directions. Therefore, the design of nonreciprocal emitters is connected with isolator designs that seek to maximize the transmission contrast. On the other hand, since our motivation is to construct such a nonreciprocal device in the context of energy harvesting, the device needs to operate in the optical or thermal frequency range for broad-area incident light. Thus, many standard designs of isolators are not applicable. For example, microwave isolators do not operate with free-space light illuminations. Moreover, those existing optical isolator designs that operate for free-space broad-area incident light at the optical frequencies also have limitations for our purpose. The isolators based on the Faraday configuration are generally bulky and additionally require polarizers and antireflective coatings, resulting in the final structure with a large thickness. In the Voigt configuration, most isolators operate either only in the reflection regime or only for the oblique illuminations. Thus, the challenge for a compact nonreciprocal thermal emitter operating in transmission has not been addressed in previous works.

In order to achieve nonreciprocal emission (or isolation in transmission), the magnetic symmetry group of the structure must exclude some of the symmetry operations. For the normal incidence in the \(\pm x\) direction, the representing examples of the symmetries that simultaneously need to be broken are \(R, I, m_x, m_y, m_{xy}, m_{yx}, p_\parallel, p_\perp\). Here, \(R\) represents the time-reversal symmetry operation, and \(I\) represents the inversion symmetry operation. \(m\) represents the mirror symmetry with respect to the plane perpendicular to the \(j\) axis, where \(n\) and \(p\) represent the \(n\)-fold and \(p\)-fold rotation symmetry, respectively, about the \(j\) axis, where \(n\) is any natural number higher than 1 and \(p\) is any even natural number. Index \(j\) can be any one of \(x, y,\) and \(z\), while \('\) means an additional time-reversal operation to the preceding operation (e.g., \(m' = m_\odot R\)). Considering only the array of bars in Figure 3 (excluding both continuous slabs), we can see that their symmetry group includes only the symmetry operations \(m_{x'}, m_{z'},\) and \(2\gamma\), which does not preclude the nonreciprocal emission. Therefore, the array of bars consisting of dielectric and magneto-optical materials (with the given magnetization direction) by itself can exhibit the desired nonreciprocal property. However, the nonreciprocal effect in such a system is generally weak due to its low Q-factor. Hence, we add two continuous slabs: the upper one for creating a strong guided-mode resonance response and the bottom one, placed sufficiently far apart, for independent tuning of the background scattering matrix \(C\) in our CMT model without affecting the total line width and the resonant frequency. The bottom slab provides us with an additional degree of freedom useful for simplifying the design. The only symmetry present in the final system in Figure 3 is \(I_{yz}\), which satisfies the symmetry requirement as discussed above.

In the structure of Figure 3, for TM-polarized light normally incident onto the structure, the part of the scattered field that arises from the magneto-optical materials has the same pattern independent whether the light is incident from the top or the bottom. Moreover, the scattered field above or below the structure exhibits a 180° phase difference. The dielectric structures surrounding the magneto-optical materials have the right symmetry to ensure that such scattered field can radiate into the far field. Consequently, there is constructive or destructive interference depending on the direction of incident light, which results in the transmission contrast.

RESULTS AND DISCUSSION

Optimization for Ideal Performance

Here, we explain the optimization of our design with the guidance of the CMT model developed above. First, to illustrate the general principles, we conduct the optimization without restricting ourselves to any specific materials. Then, in the following section, we discuss more about the material constraints.

We conduct full-wave simulations of the emitter shown in Figure 3 using a 2D finite-element frequency domain solver (RF module in COMSOL Multiphysics). A periodic boundary condition is applied in the \(xy\) plane. We compute the spectra of reflectivities and transmissivities as we illuminate the nonreciprocal structure by TM-polarized light along either the \(+x\) or \(-x\) direction (see Figure 3). We calculate, using eq 10, the spectra of absorptivities and emissivities from the reciprocal structure by TM-polarized light above or below the structure. Consequently, there is constructive or destructive interference depending on the direction of incident light, which results in the transmission contrast.
our CMT model (eq 10), to determine \(k_a, d_a \), and \(\gamma \). Once the contrast close to unity is achieved, we then tune the imaginary part of the diagonal relative permittivity \(\varepsilon_{a0} \) to satisfy the critical coupling condition. Since \(1/\tau \), which is also determined from the fitting, can be controlled independently from other CMT parameters by varying \(\varepsilon_{a0} \), we can safely tune the material loss at the end without affecting the parameters determined in the previous step.

As a result of optimization, \(\varepsilon_a = 0.19 \) and \(\varepsilon_{a0} = 0.0015 \) are chosen. These values are approximately 3\(\times \) larger and 60\(\times \) smaller than the actual values for BIG, respectively. The optimized geometric parameters read as \(w_1 = 0.21a, w_2 = 0.19a, h_1 = 0.097a, h_2 = 0.065a, h_3 = 0.05a \), and \(l = 1.67a \), where \(a \) is the periodicity. All the geometric parameters are illustrated in Figure 3 with the correct scaling.

Figure 4 shows the response functions for the optimized emitter. As one can see, a nearly complete contrast between the absorptivity and emissivity is to achieve a large difference in the in-coupling coefficients \(k_a \) and out-coupling coefficient \(d_1 \). Below, we examine the influence of the magneto-optical effect on such coupling constants by considering the dependency of the normalized coupling rates \(\frac{\kappa_1}{2\gamma} \) and \(\frac{d_1}{2\gamma} \) as functions of \(\varepsilon_a \) (Figure 5). Note that we tune \(\varepsilon_a \) in a range where it is sufficiently small to be considered as a perturbation, while maintaining the other parameters as they were determined from the optimization process.

When \(\varepsilon_a = 0 \), the input and output coupling rates exactly match, and this corresponds to the reciprocal case without magnetization. As \(\varepsilon_a \) increases, the two coupling rates split and the relation between this splitting and \(\varepsilon_a \) appears to be linear. This linearity can be explained by applying the first-order perturbation theory \(36 \) to the relation between the coupling rates and the Hamiltonian of the system and by considering a time-reversal conjugate system. The out-coupling rate from a resonator to an adjacent port has the following relation to Hamiltonian \(V \):\(2421 \)

\[
|d_1|^2 \propto \left(|cVq|^2 |g(\omega)| \right)^2 (13)
\]

where \(|q\rangle \) and \(|c\rangle \) represent a state in the port and the resonator, respectively, \(V \) is the Hamiltonian that describes the coupling between the port and the resonator, the overline denotes the average over the states in the port, and \(g \) is the density of states in the port. Then, if we consider small \(\varepsilon_a \) as a perturbation applied to the original system, the following approximation holds:

\[
\Delta |d_1|^2 \propto \left(\langle cVq | \delta V | qVc \rangle + \langle qVl | \delta V | cVl \rangle \right) (14)
\]

where \(\delta V \) is the perturbation of the Hamiltonian coming from the addition of \(\varepsilon_a \). Therefore, when \(\varepsilon_a \) is sufficiently small, a change in the out-coupling rate \(\Delta |d_1|^2 \) is linearly proportional to \(\varepsilon_a \) due to eqs 13 and 14 since the Hamiltonian elements \(\langle cVq | \delta V | qVc \rangle \) and \(\langle qVl | \delta V | cVl \rangle \) are linear with respect to \(\varepsilon_a \). Meanwhile, the in-coupling coefficient \(\kappa_1 \) in the emitter corresponds to the out-coupling coefficient \(d_1 \) in its time-reversal conjugate system \(25 \) (tilde symbol denotes the conjugation operator) since these coefficients can be determined in the corresponding lossless system, as we discussed in the CMT analysis section. Then, since the conjugate emitter has the off-diagonal permittivity \(\varepsilon_a \) with the opposite sign, the slope of \(\Delta |d_1|^2 = \Delta |\kappa_1|^2 \) will be opposite to that of \(\Delta |d_1|^2 \). This behavior leads to the linear and opposite splitting of the coupling rates \(|d_1|^2 \) and \(|\kappa_1|^2 \). On the other hand, if we consider \(\tilde{y} \) in the conjugate system, due to eq 8c and the relationship between the coupling coefficients of the original and conjugate systems \(\tilde{d} = \kappa_1 \) and \(\tilde{\kappa}_1 \)
\(= d_i \text{ for } i = 1 \text{ and } 2 \), \(\gamma\) has to be equal to \(\gamma\) of the original system. As a result, \(\gamma\) is an even function with respect to \(\varepsilon_i\) and constant in the first-order approximation. Thus, the normalized coupling rates \(\frac{\partial \varepsilon_1}{\partial z}\) and \(\frac{\partial \varepsilon_2}{\partial z}\), shown in Figure 5, also vary linearly with respect to \(\varepsilon_i\) with different slope signs. Note that this linear and monotonic increase of splitting is limited to the regime where \(\varepsilon_i\) is sufficiently small, and a similar behavior is not assured when the first order approximation does not hold anymore.

Emitter Realization Based on Weyl Semimetal. Although the results shown above demonstrate nearly perfect nonreciprocal emitter performance, finding magneto-optical material whose permittivity is equal to the optimized one can be a nontrivial task. For example, BIG with realistic losses in the diagonal permittivity and realistic \(\varepsilon_i\) will not provide a high emissivity-absorptivity contrast. As a rule of thumb, the high contrast requires sufficiently small \(\varepsilon_d\) and sufficiently large \(\varepsilon_i\) of the magneto-optical material. Here, we propose to use a magnetic Weyl semimetal of EuCd\(_2\)As\(_2\) as one candidate of the magneto-optical material with such desired properties.

We use the permittivity dispersion data from refs30, 38, and 39. While this material is relatively lossy, it has an extremely high off-diagonal permittivity, which makes its overall performance good. Since \(\varepsilon_i\) is large enough at most frequencies, we consider the operating frequency that minimizes the \(\varepsilon_d/\varepsilon_i\) value. At frequency \(\omega_0 = 4.96 \times 10^{14} \text{ rad/s}\), the permittivity values for the Weyl semimetal are \(\varepsilon_d = 3.47 - j0.0733\) and \(\varepsilon_i = -2.39\). Since the operating frequency is fixed now, we set \(\varepsilon_i\) to 11.7, which corresponds to the dielectric constant of silicon at this frequency. Next, using the approach described above we optimize the geometry of the Weyl emitter at the resonance frequency \(\omega_0\). The optimized geometric parameters read as \(a = 1.61 \mu\text{m}, w_1 = 400 \text{ nm}, w_2 = 220 \text{ nm}, h_1 = 830 \text{ nm}, h_2 = 700 \text{ nm}, h_3 = 80 \text{ nm}, \) and \(l = 2.13 \mu\text{m}\). We note that the bandwidth of the resonance is about \(10^{15} \text{ rad/s}\), which is narrow enough to neglect the impact of dispersion, and we assume constant permittivity values throughout this resonance regime.

As can be seen from Figure 6a, the asymmetric Fano line shape of the guided-mode resonance appears in the reflectivity and transmissivity spectra. At this resonance, the absorptivity-emissivity contrast reaches \(|r_i(\omega_0) - \varepsilon_i(\omega_0)| \approx 0.6\) (see Figure 6b). Therefore, relatively high contrast in absorptivity and emissivity can be achieved with realistic material systems. Importantly, the operating frequency of the nonreciprocal emitter can be shifted by changing the Fermi level of the Weyl semimetal.30,38

Note that when considering the electromagnetic properties of a Weyl semimetal, it is important to take account of the Fermi-arc surface states that can affect the boundary conditions for the electromagnetic waves.30 However, in our simulation, the magnitude of the tangential electric and magnetic fields along the boundary of the Weyl semimetal region turns out to meet the condition of neglecting the Fermi-arcs \((\frac{\varepsilon_i}{\varepsilon_d} ||_{\mathbf{u}_i} \ll 1\) where \(E_i\) is the tangential electric field and \(H_z\) is the magnetic field in the \(z\) direction) proposed in ref 30. Thus, we ignore this effect and consider the conventional boundary conditions.

![Figure 6. Response functions of the optimized emitter consisting of Weyl semimetal and silicon. The shown results are for the TM-polarized light: (a) reflectivities and transmissivities; (b) absorptivities and emissivities.](image-url)
ACKNOWLEDGMENTS

The authors declare no competing financial interest.

REFERENCES

ACKNOWLEDGMENTS

This work was supported by the Department of Energy Photonics at Thermodynamics Limits Energy Frontier Research Center under Grant DE-SC0019140 (theory and design) and by the Defense Advanced Research Projects Agency Grant No. HR00111820046 (numerical simulations).

Authors

Viktor S. Asadchy — Ginzton Laboratory, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0002-9840-4737
Bo Zhao — Ginzton Laboratory, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0002-3648-6183
Cheng Guo — Department of Applied Physics, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0003-4913-8150
Jiahui Wang — Department of Applied Physics, Stanford University, Stanford, California 94305, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acsphotonics.1c00612

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Department of Energy Photonics at Thermodynamics Limits Energy Frontier Research Center under Grant DE-SC0019140 (theory and design) and by the Defense Advanced Research Projects Agency Grant No. HR00111820046 (numerical simulations).

REFERENCES

(22) Piper, J. R.; Fan, S. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 2014, 1, 347–353.

